Критические периоды внутриутробного развития, их значение для жизни эмбриона и плода. Периоды внутриутробного развития плода человека, критические периоды Критические периоды эмбрионального развития

«Критические периоды эмбрионального развития

млекопитающих и человека »

Студентки Огарковой Марии Андреевны

Специальности 060601

«медицинская биохимия»

Курс 1

Группа 2

Руководитель: Никонова Юлия Михайловна

Архангельск

Введение 3

РОСТ И СОЗРЕВАНИЕ ПЛОДА 4

ЭМБРИОНАЛЬНЫЙ ПЕРИОД 4

ПЛОДОВЫЙ ПЕРИОД 4

ПЕРВЫЙ КРИТИЧЕСКИЙ ПЕРИОД 5

ВТОРОЙ КРИТИЧЕСКИЙ ПЕРИОД 6

ТРЕТИЙ КРИТИЧЕСКИЙ ПЕРИОД 8

Заключение 11

литература 12

Введение

В настоящее время твердо установлено, что патология новорожденного часто обусловлена неблагоприятными воздействиями в период его внутриутробного развития.

Известно, что отдельные ткани и органы формируются в различные периоды роста эмбриона и плода. При этом ткани организма в момент максимальной интенсивности процессов дифференцировки становятся высоко чувствительными к повреждающим воздействием внешней среды (ионизирующая радиация, инфекции, химические агенты). Такие периоды, для которых характерна повышенная чувствительность к воздействию повреждающих факторов, называют «критическими периодами эмбриогенеза». Вероятность формирования отклонений в развитии в критические периоды наиболее высока.

Таким образом, знания о стадиях развития и росте плода необходимы для того, чтобы распознать и избежать возможных осложнений, которые могут возникнуть во время беременности.

Рост и созревание плода

Беременность в среднем продолжается 280 дней, или 10 акушерских месяцев от первого дня последней менструации (продолжительность акушерского месяца 28 дней; 10 акушерских месяцев ровняются 40 неделям). В течение этого времени из оплодотворенной яйцеклетки развивается зрелый плод, способный к внеутробному существованию.

Во внутриутробном развитии человека различают (условно) два периода: зародышевый (эмбриональный) и плодовый.

Эмбриональный период

Продолжается от момента оплодотворения до конца второго месяца беременности. В этот период образуются зачатки всех важнейших органов и систем (нервная, кроветворная, сердечно-сосудистая, пищеварительная, выделительная и др.); происходит формирование туловища, головы, лица, зачатков конечностей. Зародыш приобретает черты, характерные для человека. Процессы развития в этот период весьма интенсивны, приспособительные механизмы еще не развиты, поэтому зародыш очень чувствителен к действию повреждающих факторов.

Плодовый период

Начинается с конца второго - начала третьего месяца беременности и продолжается до момента рождения ребенка. В этот период плод быстро растет, происходит развитие тканей, органов и систем, находящихся в зачаточном состоянии, становление новых функциональных систем, обеспечивающих жизнедеятельность плода в период его внутриутробной жизни и после появления на свет.

Развитие плода происходит в непосредственной взаимосвязи с организмом матери, в котором участвуют биохимические, иммунные, эндокринные, нервные и другие механизмы.

Организм женщины во время беременности находится под воздействием разнообразных факторов окружающей среды, которые, влияют на течение беременности и в ряде случаев вызывают развитие той или иной патологии плода. Однако реакция плода на повреждающие факторы зависит от стадии его развития и чувствительности его тканей к их воздействию.

В эмбриональном и плодовом периодах принято выделять стадии, когда зародыш обладает высокой чувствительностью к повреждающим веществам. Эти периоды получили название критических. Выделение этих периодов очень важно. Критические периоды развития характеризуются повышением обменных процессов (в эти периоды создаются все необходимые условия для осуществления одного из этапов развития зародыша в целом, а также отдельных зачатков органов и даже клеток).

В развитии человека П. Г. Светлов подчеркивает большое значение следующих критических периодов: имплантации, плацентации и перинатального (роды).

Различают следующие периоды развития плода во время беременности:
предымплантационный (с момента оплодотворения яйцеклетки со сперматозоидом до внедрения оплодотворенной яйцеклетки в слизистую стенки матки);
имплантационный (прикрепление оплодотворенной яйцеклетки к стенке матки);
органогенез и плацентация (период формирования всех органов и тканей плода, а также плаценты);
плодный - период роста и развития сформированных органов и тканей.

Предымплантационный период

В норме за 12-14 дней до ожидаемой менструации происходит овуляция, то есть достигшая больших размеров яйцеклетка выходит из яичника, поступает в маточную трубу, где чаще всего и происходит оплодотворение. С этого момента наступает беременность. Оплодотворенная яйцеклетка продолжает свой путь по маточной трубе в течение 4 дней в сторону полости матки, чему способствуют:
сокращения гладких мышц стенки маточной трубы. Эти сокращения в норме происходят в одностороннем направлении - в сторону полости матки от конца трубы, обращенного в брюшную полость;
движение ресничек слизистой оболочки, которая изнутри покрывает маточную трубу. Приходит в движение жидкость, находящаяся в трубе, и с током этой жидкости оплодотворенная яйцеклетка попадает в матку;
расслабление сфинктера (циркулярной мышцы) в области соединения маточной трубы с маткой. Этот сфинктер предназначен для предупреждения попадания оплодотворенной яйцеклетки в полость матки раньше срока, до того как матка будет готова для приема оплодотворенной яйцеклетки.

Движение яйцеклетки по маточной трубе происходит под воздействием женских половых гормонов эстрогенов и прогестерона. Прогестерон - гормон беременности, который на ранних сроках беременности вырабатывается в яичнике (на месте лопнувшего фолликула образуется желтое тело, которое продуцирует в большом количестве этот гормон и способствует наступлению и поддержанию беременности). Если прогестерона вырабатывается недостаточно, яйцеклетка из маточной трубы попадет в полость матки с опозданием. При повышенной перистальтике маточной трубы оплодотворенная яйцеклетка попадет в полость матки раньше, чем она может внедриться в слизистую, вследствие чего яйцеклетка может погибнуть. Так как при этом беременность не состоится, задержки очередной менструации не будет, то беременность останется не диагностированной, нераспознанной.

Период продвижения оплодотворенной яйцеклетки по маточной трубе считается первым критическим периодом беременности (с 12-14 до 10-8 дней до начала очередной менструации). В результате нарушения сложных механизмов регуляции работы маточной трубы яйцеклетка после оплодотворения также может внедриться в стенку трубы (внематочная беременность).


Имплантационный период

Этот период также проходит еще до предполагаемой менструации, чаще всего тогда, когда женщина еще и не подозревает о своей беременности. Попадая в полость матки, зародыш уже состоит из 16-32 клеток, однако он не сразу внедряется в слизистую матки, а еще в течение двух дней находится в свободном состоянии. Эти два дня с момента попадания оплодотворенной яйцеклетки в полость матки до ее прикрепления к стенке матки составляют имплантационный период. Место внедрения зависит от ряда обстоятельств, однако чаще всего это передняя или задняя стенка матки.

Питание плодного яйца в этот период происходит за счет местного растворения слизистой стенки матки с помощью ферментов, выделяемых плодным яйцом. По истечении 2 суток плодное яйцо внедряется в слизистую матки, которая содержит в большом количестве ферменты, гликоген, жиры, микроэлементы, защитные антитела и другие биологически активные вещества, необходимые для дальнейшего роста зародыша.

Второй критический период беременности - имплантация, то есть прикрепление плодного яйца к стенке матки. Если имплантация не удается, то беременность завершается под маской менструации (фактически это не диагностированный выкидыш на очень маленьких сроках). Так как задержки менструации нет, то женщина даже не предполагает о наличии у нее беременности.

На процесс имплантации большое влияние оказывают гормональные факторы: концентрация таких гормонов, как прогестерон, эстрогены, пролактин (гормон гипофиза - железы, расположенной в головном мозге), глюкокортикоиды (гормоны надпочечников) и т.д.

Огромное значение имеет и подготовленность слизистой оболочки матки к имплантации, готовность ее принять плодное яйцо. После абортов, выскабливаний, длительного ношения внутриматочной спирали, инфекций, воспалительных процессов может нарушиться рецепторный (воспринимающий) аппарат эндометрия, то есть чувствительные к гормонам клетки, расположенные в слизистой оболочке матки, неправильно реагируют на гормоны, из-за чего слизистая матки недостаточно подготавливается к предстоящей беременности. Если плодное яйцо недостаточно активное, своевременно не выделяет нужное количество ферментов, разрушающих слизистую матки, то оно может внедриться в стенку матки в нижнем сегменте или в шейке матке, в результате чего возникает шеечная беременность или аномальная плацентация (плацента перекрывает выход из матки частично или полностью).

Наличие сращений (синехий) в полости матки после воспалительных процессов, выскабливаний, а также миомы матки тоже могут препятствовать нормальной имплантации.

Период органогенеза и плацентации

Данный период продолжается с момента внедрения плодного яйца в слизистую оболочку матки до 10-12 недель беременности, когда полностью сформированы все органы и ткани плода, а также плацента (детское место - связующее звено между плодом и материнским организмом, с помощью которого происходят процессы питания, обмена веществ и дыхания плода в утробе матери). Это очень ответственный период внутриутробной жизни, т.к. в это время идет закладка всех органов и тканей плода. Уже на 7-й день после оплодотворения яйцеклетки организм матери получает сигнал о беременности благодаря гормону - хорионическому гонадотропину (ХГ), который выделяется плодным яйцом. ХГ, в свою очередь, поддерживает развитие желтого тела в яичнике. Желтое тело выделяет прогестерон и эстрогены в количестве, достаточном для поддержания беременности. На начальном этапе беременности, до формирования плаценты, желтое тело берет на себя функцию гормональной поддержки беременности, и если по тем или иным причинам желтое тело работает неполноценно, то могут возникнуть угроза выкидыша, выкидыш или неразвивающаяся беременность.

Весь период органогенеза и плацентации также является критическим периодом внутриутробной жизни плода , т.к. плод высокочувствителен к повреждающему влиянию окружающей среды, особенно в первые 3-6 недель органогенеза. Этот критический период развития беременности особенно важен, т.к. под влиянием неблагоприятных факторов окружающей среды эмбрион может погибнуть или у него могут возникнуть аномалии развития.

В эти периоды особенно опасно влияние на зародыш факторов окружающей среды, в числе которых:
физические (ионизирующие излучения, механические воздействия); это может быть действие ионизирующей радиации, например в условиях техногенной катастрофы на атомных объектах, механические воздействия в виде вибрации и проч. на соответствующих производствах или в момент спортивных тренировок;
химические: фенолы, окись азота, пестициды, тяжелые металлы и т.д. - эти вещества также могут попасть в организм беременной, если она работает на соответствующих производствах или при проведении ремонта в помещении, где долго находится женщина. К химическим веществам относятся никотин, алкоголь, некоторые лекарственные препараты, например используемые для лечения онкологических заболеваний, и т.д.;
биологические (например, вирус герпеса, цитомегаловирус, вирус краснухи, и т.д.).

Необходимо подчеркнуть, что в критические периоды вредные воздействия приводят к наиболее тяжелым последствиям - гибели зародыша или формированию грубых пороков развития.

По данным французских исследователей, если беременная женщина впервые в жизни столкнулась с цитомегаловирусом - возбудителем, вызывающим заболевание, которое у взрослых может протекать как банальное ОРЗ (острое респираторное заболевание) во время беременности (что видно по исследованию крови на иммуноглобулины к ЦМВ), особенно на ранних сроках, то в 1/3 случаев могут возникать пороки развития плода. Если же до беременности она уже была инфицирована, организм вовремя включает защитные механизмы борьбы с вирусом,) эта вероятность снижается до 1%. То же можно сказать и о вирусе простого герпеса.

Особую опасность представляет вируc краснухи при инфицировании им на ранних сроках беременности. Женщине в таких случаях рекомендуют искусственное прерывание беременности, т.к. высок риск рождения ребенка такими пороками развития, как микрофтальмия - порок развития глаз, микроцефалия -серьезный порок развития головного мозг; глухота, врожденные пороки сердца и т.д.

Из химических соединений особенно неблагоприятно сказываются на состоянии зародыша свинец, ртуть, бензол, никотин, оксиды углеродов и другие вещества, которые могут вызвать пороки развития.

Некоторые лекарственные препараты особенно противопоказаны во время беременности (например, противоопухолевые антибиотики); если они принимались, то рекомендуется прерывание беременности на ранних сроках. При приеме некоторых лекарственных средств необходимы консультация генетика, тщательное наблюдение во время беременности за состоянием зародыша и плода (УЗИ, исследование крови на хорионический гонадотропин, альфа-фетопротеин, эстриол, которые позволяют заподозрить наличие пороков развития плода - анализ проводится в 16-20 недель беременности).

Женщин, работающих на химическом производстве, во время беременности необходимо перевести в другие, менее опасные цеха. Что касается влияния радиации, то, если она воздействует на женщину до имплантации зародыша (в предымплантационный период), в 2/3 случаев эмбрион погибает. В период органогенеза и плацентации часто возникают пороки развития или наступает внутриутробная гибель зародыша или плода.

В 7-8 недель беременности обычно начинается обратное развитие желтого тела в яичнике: образно говоря, яичники передают хориону (будущей плаценте) функцию гормональной поддержки беременности, и если хорион недостаточно развит, не активен, то возникает угроза прерывания беременности.

7-8 недель - это также критический период для развития беременности. Очень часто выкидыш, неразвивающаяся беременность или угроза выкидыша (кровянистые выделения из половых путей, боли внизу живота и поясницы) появляются именно на этом сроке. Если это произошло, женщине необходима госпитализация. В стационаре используют различные лекарственные препараты, которые помогут сохранить беременность, если это возможно.

Итак, как мы убедились, первый триместр беременности почти полностью состоит из критических периодов, поэтому в это время особенно важно:
по возможности исключить отрицательное воздействие вредного производства;
изменить комплекс физических упражнений при активных тренировках в период до беременности, отложить занятия экстремальными видами спорта на послеродовый период;
проводить достаточное количество времени на свежем воздухе;
достаточное количество времени (8- 10 часов) уделять сну;
не принимать активное участие в ремонте помещений;
отказаться от вредных привычек, особенно таких, как употребление алкоголя, наркотиков, курение.

Плодный период

С 12 недель беременности начинается плодный период внутриутробной жизни плода, который длится до 40 недель. В это время плод уже полностью сформирован, однако физически незрел.

Сроки беременности 13, 20-24 и 28 недель являются критическими для пациенток с гиперандрогенией - повышенным содержанием мужских половых гормонов - из-за начала выработки гормонов плода. В эти сроки необходимо проверить уровень гормонов и скорректировать дозу препаратов, которые назначены для снижения количества мужских половых гормонов (дексаметлзон, метип-ред и т.д.). При этом доктор следит за состоянием шейки матки, так как повышение количества мужских половых гормонов может привести к ее преждевременному раскрытию.

В 13 недель беременности плод мужского пола начинает вырабатывать собственный тестостерон - мужской половой гормон, в 20-24 недели начинается выработка кортизола и мужских половых гормонов корой надпочечников плода, в результате чего у женщины с гиперандрогенией может быть очередной подъем мужских половых гормонов, что приведет к прерыванию беременности.

В 28 недель гипофиз плода начинает синтезировать гормон, стимулирующий работу надпочечников, - адренокортикотропный гормон, в результате чего усиливается выработка мужских половых гормонов, что также может привести к прерыванию беременности. При необходимости на этом сроке доктор скорректирует дозу лекарственных препаратов.

Итак, действие неблагоприятных факторов в критические периоды беременности может привести к самым неблагоприятным последствиям. Поэтому женщине в продолжение всего времени ожидания ребенка, а особенно в критические периоды, нужно избегать действия неблагоприятных факторов и при любых «неполадках» обращаться к врачу. Хочется посоветовать будущим мамам поберечь себя, тем более что беременность длится всего 9 месяцев, а от ее течения зависят здоровье и жизнь вашего малыша.

Что должно стать поводом для тревоги?

Если действие неблагоприятных факторов в критические сроки привело к угрозе прерывания беременности, женщины жалуются на боли внизу живота, в пояснице - тянущие или схваткообразные. Боли могут сопровождаться кровянистыми выделениями из половых путей. Такие симптомы нельзя оставлять без должного внимания, т.к. вслед за ними может возникнуть массивное кровотечение из-за неполного самопроизвольного выкидыша, при котором беременность нельзя будет спасти.

Очень важно при первых симптомах угрожающего выкидыша сразу обратиться к гинекологу, пройти необходимые исследования, включая осмотр на кресле, УЗИ, гормональные исследования крови на женские половые гормоны, мужские половые гормоны, гормоны щитовидной железы.

Жасмина Мирзоян
Врач акушер-гинеколог,
канд. мед. наук, г. Москва
Статья предоставлена журналом
«9 месяцев», 2006г.

Развитие зародыша происходит под влиянием факторов внешней среды. Один и тот же фактор в различные периоды действует по-разному. Периоды повышенной чувствительности зародыша к повреждающим факторам внешней среды называются критическими периодами.

В основе критического периода может быть:

    активная дифференцировка клеток;

    переход от одной стадии к другой;

    изменение условий существования.

В развитии любого органа существует свой критический период. В эмбриогенезе человека русский ученый П.Г. Светлов выделил три критических периода:

    имплантации (6 – 7 сутки после оплодотворения);

    плацентации (конец второй недели);

    перинатальный (период родов).

Нарушение нормального хода эмбриогенеза ведет к развитию аномалий и уродств. Они встречаются у 1-2% людей.

Виды пороков: аплазия (отсутствие органа), гипоплазия (недоразвитие органа), гипертрофия (увеличение размеров органа), гипотрофия (уменьшение размеров органа), атрезия (отсутствие отверстия), стеноз (сужение протока). Одним из пороков являются сиамские близнецы (сросшиеся в различной степени). Впервые сиамские близнецы (два брата) были описаны в Юго-Восточной Азии. Они прожили 61 год, были женаты, имели 22 детей. В России жили две сросшиеся сестры Маша и Даша.

Причины уродств:

    генетические;

    экзогенные;

    смешанные.

Экзогенные факторы называются тератогенными (от слова teratos - уродство). Тератогенные факторы по своей природе делятся на:

    химические – различные химические вещества, хинин, алкоголь, антибиотик актиномицин Д, хлоридин, талидомид;

    физические – рентгеновские лучи и другие виды ионизирующих излучений;

    биологические – вирусы, простейшие (токсоплазма), токсины гельминтов.

Фенокопия – фенотипическая копия наследственного признака или заболевания. Фенокопии по наследству не передаются. Например, возможна фенокопия глухонемоты. Она может возникнуть в том случае, когда женщина в период беременности переболеет коревой краснухой. При этом вирус проникает через плаценту в организм плода и нарушает у него процесс формирования слуховых косточек, что в последующем ведет к глухонемоте. В то же время существует глухонемота, которая определяется патологическим геном и передается по наследству. Другой пример – фенокопия кретинизма. Кретинизм – это наследственное заболевание, в основе которого лежит гипофункция щитовидной железы. Фенокопия кретинизма возникает в условиях недостаточного поступления йода с пищей. Вследствие образования после травмы рубца в головном мозге может возникнуть фенокопия наследственного заболевания эпилепсии.

    Закономерности наследования признаков при моно- и дигибридном скрещивании. Примеры.

    Формы взаимодействия аллельных генов. Примеры.

Аллельными называются гены, которые определяют контрастирующие (альтернативные) свойства одного признака и расположены в гомологичных хромосомах в одном и том же локусе.

Например, цвет глаз – признак; голубой и карий – контрастирующие свойства. Или: умение владеть рукой – признак; праворукость и леворукость – контрастирующие свойства.

Взаимодействие аллельных генов

Различают 6 видов такого взаимодействия:

    полное доминирование

    неполное доминирование

    сверхдоминирование

    кодоминирование

    межаллельная комплементация

    аллельное исключение

Краткая характеристика видов взаимодействия аллельных генов

При полном доминировании действие одного гена из аллельной пары (т.е. одного аллеля) полностью скрывает присутствие другого аллеля. Фенотипически проявляемый ген называется доминантным и обозначается А;

подавляемый ген называется рецессивным и обозначается а .

Неполное доминирование имеет место в случае, когда доминантный ген не полностью подавляет действие рецессивного гена, и у гетерозигот наблюдается промежуточный характер наследования признака.

Пример – окраска цветков у ночной красавицы: доминантные гомозиготы – красные, рецессивные гомозиготы – белые, гетерозиготы – промежуточная, розовая окраска.

О сверхдоминировании говорят, когда фенотипическое проявление доминантного гена в гетерозиготном варианте сильнее, чем в гомозиготном:

Кодоминирование – проявление в гетерозиготном состоянии признаков, кодируемых обоими аллельными генами.

Пример – наследование у человека IY группы крови (AB). Это же – пример множественного аллелизма.

Множественный аллелизм –

Межаллельная комплементация – взаимодействие аллельных генов, при котором возможно формирование нормального признака у организма, гетерозиготного по двум мутантным аллелям этого гена.

Пример: D – ген, кодирующий синтез белка с четвертичной структурой (например, глобин в гемоглобине). Четвертичная структура состоит из нескольких полипептидных цепей. Мутантные гены – D и D - определяют синтез измененных белков (каждый своего). Но при объединении эти цепи дают белок с нормальными свойствами:

D + D = D .

Аллельное исключение – такое взаимодействие, при котором в разных клетках одного и того же организма фенотипически проявляются разные аллельные гены. В результате возникает мозаицизм .

Классический пример – аллельные гены в Х-хромосоме женского организма. В норме из двух этих хромосом функционирует только одна. Другая находится в плотном спирализованном состоянии (инактивированном) и называется «тельце Барра ». При образовании зиготы 1 хромосома наследуется от отца, другая – от матери, инактивированной может быть любая из них.

    Множественный аллелизм. Примеры. Механизм возникновения.

Множественный аллелизм – наличие в генофонде популяций более двух аллельных генов.

Пример в природе – окраска шерсти у кроликов.

Обозначим A ген, определяющий черную окраску (дикий тип);

a ch – ген шиншилловой окраски;

a h – ген гималайской окраски (белая, но кончики хвоста, ушей и пр.

Черные);

a – ген белой окраски.

Все эти 4 гена – аллельные. Характер их взаимодействия:

A > a ch > a h > a.

Т.е., А доминантен по отношению ко всем остальным; а ch рецессивен по отношению к А , но доминантен по отношению к а h и а; и т.д.

(Конечно, у каждой особи может быть только 2 аллеля!)

Вернемся к наследованию групп крови. Существует 3 аллельных гена: I A , I B , I O .

Группа 0 (I ) – генотип: I 0 I 0 , нет антигенов;

А (II ) : I A I 0 (гетерозиготы), I A I A (гомозиготы), антиген А ;

B (III) : I B I 0 , I B I B , антиген B ;

AB (IY ) : I A I B , и антиген А , и антиген B – фенотипически проявляется действие обоих аллельных генов.

    Наследование групп крови и резус-фактора у человека. Резус-конфликт,

Кодоминирование – проявление в гетерозиготном состоянии признаков, кодируемых обоими аллельными генами. Примеры: наследование у человека IV группы крови (AB). В то же время группы крови являются примером множественного аллелизма.

Множественный аллелизм – наличие в генофонде популяции более двух аллельных генов.

Группы крови человека по системе АВО кодируются тремя аллельными генами: I A , I B , I 0 .

Группа крови Генотип

0 (I ) I 0 I 0

А (II) I A I 0 , I A I A ;

B (III) I B I 0 , I B I B ;

AB (IV ) I A I B (фенотипически проявляется действие обоих аллельных генов – явление кодоминирования ).

Группа крови

На эритроцитах имеются специальные белки - антигены групп крови. В плазме к этим антигенам имеются антитела. При встрече одноименных антигена и антитела происходит их взаимодействие и склеивание эритроцитов в монетные столбики. В таком виде они не могут переносить кислород. Поэтому в крови одного человека не встречаются одноименные антиген и антитело. Их комбинация - группа крови. Ее надо учитывать при переливании крови, т.е. переливать только одногруппную кровь, чтобы избежать склеивания. Антигены и антитела групп крови, как все белки организма, наследуются - именно белки, а не сами группы крови, поэтому комбинация этих белков у детей может отличаться от комбинации у родителей и получаться другая группа крови. Существует множество антигенов на эритроцитах и множество систем групп крови. В рутинной диагностике пользуются определением группы крови по системе АВ0.

Антигены: А, В; антитела: альфа, бета.

Наследование: ген IA кодирует синтез белка А, IB - белка В, i не кодирует синтез белков.

Группа крови I (0). Генотип ii. Отсутствие антигенов на эритроцитах, присутствие обоих антител в плазме

Группа крови II (А). Генотип IA\IA или IА\i. Антиген А на эритроцитах, антитело бета в плазме

Группа крови III (В). Генотип IB\IB или IВ\i. Антиген В на эритроцитах, антитело альфа в плазме

Группа крови IV (АВ). Генотип IA\IB. Оба антигена на эритроцитах, отсутствие антител в плазме.

Наследование:

У родителей с первой группой крови может родиться ребенок только с первой группой.

У родителей со второй - ребенок с первой или второй.

У родителей с третьей - ребенок с первой или третьей.

У родителей с первой и второй - ребенок с первой или второй.

У родителей с первой и третьей - ребенок с первой или третьей.

У родителей с второй и третьей - ребенок с любой группой крови.

У родителей с первой и четвертой - ребенок с второй и третьей.

У родителей с второй и четвертой - ребенок с второй, третьей и четвертой

У родителей с третьей и четвертой - ребенок с второй, третьей и четвертой.

У родителей с четвертой - ребенок с второй, третьей и четвертой.

Если у одного из родителей первая группа крови, у ребенка не может быть четвертой. И наоборот -если у одного из родителей четвертая, у ребенка не может быть первой.

Групповая несовместимость:

При беременности может возникнуть не только резус-конфликт, но и конфликт по группам крови. Если плод имеет антиген, которого нет у матери, она может вырабатывать против него антитела: антиА, антиВ. Конфликт может возникнуть если плод имеет II группу крови, а мать I или III; плод III, а мать I или II; плод IV, а мать любую другую. Нужно проверять наличие групповых антител во всех парах, где у мужчины и женщины разные группы крови, за исключением случаев, когда у мужчины первая группа.

Резус-фактор

Белок на мембране эритроцитов. Присутствует у 85% людей - резус-положительных. Остальные15% - резус-отрицательны.

Наследование: R- ген резус-фактора. r - отсутствие резус фактора.

Родители резус-положительны (RR, Rr) - ребенок может быть резус-положительным (RR, Rr) илирезус-отрицательным (rr).

Один родитель резус-положительный (RR, Rr), другой резус-отрицательный (rr) - ребенок может быть резус-положительным (Rr) или резус-отрицательным (rr).

Родители резус-отрицательны, ребенок может быть только резус-отрицательным.

Резус-фактор, как и группу крови, необходимо учитывать при переливании крови. При попадании резус фактора в кровь резус-отрицательного человека, к нему образуются антирезусные антитела, которые склеивают резус-положительные эритроциты в монетные столбики

Резус-конфликт

Может возникнуть при беременности резус-отрицательной женщины резус-положительным плодом (резус-фактор от отца). При попадании эритроцитов плода в кровоток матери, против резус-фактора у нее образуются антирезусные антитела. В норме кровоток матери и плода смешивается только во время родов, поэтому теоретически возможным резус-конфликт считается во вторую и последующие беременности резус-положительным плодом. Практически в современных условиях часто происходит повышение проницаемости сосудов плаценты, различные патологии беременности, приводящие к попаданию эритроцитов плода в кровь матери и во время первой беременности. Поэтому антирезусные антитела необходимо определять при любой беременности у резус-отрицательной женщины начиная с 8 недель (время образования резус-фактора у плода). Для предотвращения их образования во время родов, в течение 72 часов после любого окончания беременности срока более 8 недель вводят антирезусный иммуноглобулин.

    Комплементарное взаимодействие неаллельных генов. Примеры.

Комплементарным называется взаимодействие, при котором действие одного гена дополняется действием другого, неаллельного ему, в результате чего формируется качественно новый признак.

Классический пример такого взаимодействия – наследование формы гребня у кур. Встречаются следующие формы гребня: листовидный – результат взаимодействия двух рецессивных неаллельных генов ab ; ореховидный – результат взаимодействия двух доминантных неаллельных генов AB ; розовидный и гороховидный – c генотипами A и B , соответственно.

Другой пример – наследование окраски шерсти у мышей. Окраска бывает серая, белая и черная, а пигмент только один – черный. Просто черный пигмент у серых мышей имеет разное распределение по длине волоса (кольцами), причем наложение волосков происходит с определенным сдвигом, что в совокупности и дает впечатление серого цвета.

В основе образования той или иной окраски – взаимодействие двух пар неаллельных генов:

A ген, определяющий синтез пигмента;

a ген, не определяющий синтез пигмента;

B ген, определяющий неравномерное распределение пигмента;

b ген, определяющий равномерное распределение пигмента.

P AA BB aa bb

гомозиготы

G AB ab

серые белые

F 1 AaBb

AaBb AaBb

У родительской пары – 4 сорта гамет. Чтобы не запутаться при анализе, чертим решетку Пеннета.

Расщепление получается в соотношении 9:3:4 (серые:черные:белые),или 9/16, 3/16, 4/16 потомства. Случаев комплементарного взаимодействия неаллельных генов – 12 (черный и серый цвет).

Примеры комплементарного взаимодействия у человека: нормальный слух – результат взаимодействия двух доминантных неаллельных генов, определяющих нормальное развитие слухового нерва и улитки; белок интерферон также определяется двумя неаллельными генами; можно привести в пример также гемоглобин.

Возможные варианты расщепления в F 2 : 9:3:4; 9:3:3:1; 9:7.

    Доминантный эпистаз. Определение. Примеры.

доминантный и рецессивный.

С

с

I – ген, подавляющий окраску,

i

Варианты расщепления в F 2: 12:3:1, 13:3.

ферментопатии

dd .

При доминантном эпистазе, когда доминантный аллель одного гена" (А) препятствует проявлению аллелей другого гена (В или Ь), расщепление в потомстве зависит от их фенотипического значения и может выражаться соотношениями 12:3:1 или 13:3.

    Рецессивный эпистаз. Определение, примеры.

Эпистаз

Эпистаз - такой вид взаимодействия неаллельных генов, при котором действие гена из одной аллельной пары подавляется действием гена из другой аллельной пары.

Различают две формы эпистаза – доминантный и рецессивный. При доминантном эпистазе в качестве гена-подавителя (супрессора) выступает доминантный ген, при рецессивном эпистазе – рецессивный ген.

Пример доминантного эпистаза – наследование окраски оперения у кур. Взаимодействуют две пары неаллельных генов:

С – ген, определяющий окраску оперения (обычно пеструю),

с – ген, не определяющий окраску оперения,

I – ген, подавляющий окраску,

i – ген, не подавляющий окраску.

Варианты расщепления в F 2: 12:3:1, 13:3.

У человека примером доминантного эпистаза являются ферментопатии (энзимопатии) – заболевания, в основе которых лежит недостаточная выработка того или иного фермента.

Пример рецессивного эпистаза – так называемый «бомбейский феномен»: в семье у родителей, где мать имела группу крови О, а отец – группу крови А, родились две дочери, из которых одна имела группу крови АВ. Ученые предположили, что у матери в генотипе был ген I B , однако его действие было подавлено двумя рецессивными эпистатическими генами dd .

При рецессивном эпистазе ген, определяющий какой-то признак (В), не проявляется у гомозигот по рецессивному аллелю другого гена (аа). Расщепление в потомстве двух дигетерозигот по таким генам будет соответствовать соотношению 9:3:4 (рис. 6.20). Невозможность фор­мирования признака при рецессивном эпистазе расценивают также как проявление несостоявшегося комплементарного взаимодейст­вия, которое возникает между доминантным аллелем эпистатиче-ского гена и аллелями гена, определяющего тот признак.

С этой точки зрения может быть рассмотрен «Бомбейский феномен» у человека, при котором у организмов-носителёй "доминантного аллеля гена, определяющего группу крови по системе АВО (1 А или 1 в), фенотипически эти аллели не проявляются и формируется 1-я группа крови. Отсутствие фенотипического проявления доминантных аллелей гена I связывают с гомозиготностью некоторых организмов по рецессивному аллелю гена"Н,что препятствует формированию антигенов на поверхности эритроцитов, В браке дигетерозигот по генам Н и I (НhI А I В) "/4 потомства будет иметь фенотипически I группу крови в связи с их гомозиготностью по рецессивному аллелю гена Н -hh.

Рассмотренные выше расщепления по фенотипу в потомстве от скрещивания гетерозиготных родителей или анализирующего скре­щивания как при моногенном типе наследования признаков, так и в случае взаимодействия неаллельных генов носят вероятностный характер. Такие расщепления наблюдаются лишь в том случае, если реализуются все возможные встречи разнообразных гамет при оп­лодотворении и все потомки оказываются жизнеспособными. Вы­явление близких расщеплений вероятно при анализе большого количества потомков, когда случайные события не способны изме­нить характер* расщепления. Г. Мендель, разработавший приемы гибридологического анализа, впервые применил статистический подход к оценке получаемых результатов. Он анализировал большое число потомков, поэтому расщепления по фенотипу, наблюдаемые им в опытах, оказались близкими к расчетным, которые получаются при учете всех типов гамет, образуемых в мейозе, и их встреч при оплодотворении.

    Полимерия. Определение. Примеры.

При полимерии несколько неаллельных генов определяют один и тот же признак, усиливая его проявления. (Это явление, противоположное явлению плейотропии .) По такому типу обычно наследуются количественные признаки, чем и обусловлено большое разнообразие их проявления.

Например, окраска зерен у пшеницы наследуется следующим образом.

A 1 a 1 – ген, не определяющий красную окраску. A 2 – ген, определяющий красную окраску. a 2 – ген, не определяющий красную окраску.

P A 1 A 1 A 2 A 2 а 1 а 1 а 2 а 2

красные белые

G A 1 A 2 a 1 a 2

F 1 A 1 a 1 A 2 a 2

розовые, так как доминантных генов только 2 (в два раза меньше, чем 4).

F 2 – расщепление «окрашенные к неокрашенным» 15:1, по тонам окраски – 1 (ярко-красные) : 4 (красные) : 6 (розовые) : 4 (бледно-розовые) : 1 (белые).

У человека аналогично наследуются рост, цвет волос, цвет кожи, артериальное давление, умственные способности(?).

    Закономерности наследования сцепленных признаков. Опыты Т.Моргана. Хромосомная теория наследственности. Понятие о генетических картах хромосом.

Согласно III закону Менделя, наследование по каждой паре признаков идет независимо друг от друга. Но этот закон справедлив лишь для случая, когда неаллельные гены расположены в негомологичных хромосомах (одна пара генов – в одной паре гомологичных хромосом, другая – в другой). Однако генов гораздо больше, чем хромосом, следовательно, в одной паре гомологичных хромосом всегда находится более одной пары генов (их может быть несколько тысяч). Как же наследуются признаки, гены которых находятся в одной хромосоме или в одной паре гомологичных хромосом? Такие признаки принято называть "сцепленными".

Термин «сцепленные признаки» был введен американским ученым Томасом Морганом. Он вместе со своими учениками изучил закономерности наследования сцепленных признаков. За эти исследования Т. Моргану была присуждена Нобелевская премия.

В качестве объекта своих исследований Т. Морган выбрал плодовую мушку дрозофилу. Выбор оказался очень удачным ввиду следующих положительных качеств дрозофилы:

    легко культивируется в лаборатории;

    имеет высокую плодовитость (откладывает до 100 яиц);

    короткий период развития – продолжительность цикла развития от яйца до половозрелой особи составляет две недели (в году 24 поколения!);

    небольшое число хромосом (четыре пары), четко отличающихся по строению.

В настоящее время дрозофила является незаменимым объектом генетических исследований.

Т. Морган анализировал скрещиваемых мух по двум парам генов, определяющих цвет тела и длину крыльев:

A – ген серого цвета тела,

a – ген черного цвета тела;

B – ген, определяющий нормальную длину крыльев,

b – ген, определяющий укороченные крылья.

I опыт. Скрещивались мухи, гомозиготные по доминантным генам, с особями, гомозиготными по рецессивным генам:

P. AABB aabb

Все потомство оказалось единообразным по генотипу и фенотипу, что соответствует I закону Менделя – закону единообразия.

II опыт – анализирующее скрещивание. Гетерозиготные самцы скрещивались с гомозиготными по рецессивным признакам самками:

P. ♂ AaBb  ♀ aabb

В потомстве получились мухи с двумя фенотипами (серые длиннокрылые и черные короткокрылые) в соотношении 1:1. Это означает, что у самца было только два сорта гамет. Образование двух сортов гамет объяснялось тем, что в данном случае неаллельные гены располагались в одной паре гомологичных хромосом. Признаки, контролируемые этими генами, были названы сцепленными.

Ш опыт – реципрокное (возвратное) скрещивание. Гетерозиготная самка скрещивалась с гомозиготным по рецессивным признакам самцом:

P. ♀ AaBb  ♂ aabb

В потомстве оказались мухи с четырьмя фенотипами в следующем соотношении:

    41,5% - серые длиннокрылые,

41,5% - черные короткокрылые,

8,5% - серые короткокрылые,

8,5% - черные длиннокрылые.

Появление в потомстве четырех фенотипов означает, что у самки, в отличие от самца, образовалось четыре сорта гамет. Появление двух дополнительных сортов гамет Морган объяснил явлением кроссинговера – обменом идентичными участками гомологичных хромосом во время профазы первого мейотического деления. Причем кроссинговер наблюдался в 17% случаев. Вероятно, у самцов кроссинговер отсутствует.

На основании проведенных опытов Морган сформулировал основные положения хромосомной теории наследственности:

    Гены расположены в хромосомах в линейном порядке (как бусинки нанитке).

    Гены, расположенные в одной хромосоме, наследуются вместе и образуют одну группу сцепления. Признаки, определяемые этими генами, называются сцепленными.

    Число групп сцепления у каждого вида равно гаплоидному набору хромосом.

    Гомологичные хромосомы способны обмениваться гомологичными участками. Такое явление получило название "кроссинговер".

    Частота явления кроссинговера прямо пропорциональна расстоянию между генами.

В последующем за единицу расстояния между генами была принята морганида, или сантиморган. 1 сантиморган соответствует 1% явления кроссинговера. Таким образом, у дрозофилы расстояние между генами, определяющими длину крыльев и цвет тела, равно 17 сантиморган.

Используя явление кроссинговера, ученые составили генетические карты, в первую очередь для объектов генетических исследований (дрозофила, кишечная палочка, кукуруза, томаты, мышь). Составляются такие карты и для человека, правда, с помощью других методов. Установлено, например, что ген, определяющий резус-фактор, находится на расстоянии трех сантиморган от гена, определяющего форму эритроцитов; ген группы крови (по системе АВ0 ) – на расстоянии 10 сантиморган от гена, определяющего дефект ногтей и коленной чашечки.

    Типы определения пола у потомства. Хромосомный механизм наследования пола. Наследование признаков, сцепленных с полом.

    прогамный,

    эпигамный,

    сингамный.

Прогамный

Эпигамный означает определение пола после оплодотворения: пол зависит от действия факторов среды.

Сингамный

Кариотип любого организма содержит 2 группы хромосом: одинаковые пары – аутосомы; разные в паре (обычно одной) – половые хромосомы, X-хромосома (так как у некоторых организмов похожа на «X») и Y-хромосома (меньшая). У бабочек:ж-ХУ м-ХХ, тараканов ж-ХХ м-Х0, моль ж-Х0 м-ХХ

Хромосомный. Этот уровень еще не гарантирует, что точно получится данный пол.

У человека и других млекопитающих зигота потенциально бисексуальна, т.е. нейтральна, недифференцирована в половом отношении, потому что зачаточные гонады (половые железы) у эмбриона имеют 2 слоя – корковый, cortex и мозговой, medulla , из которых развиваются в дальнейшем соответственно яичник и семенник.

Признаки, сцепленные с полом - признаки, гены которых находятся в негомологичных участках половых хромосом.

Участок I: гены расположены в гомологичных участках (частично сцепленные с полом)

геморрагический диатез,

пигментная ксеродерма,

общая цветовая слепота.

Участок II: гены, расположенные в Х хромосоме негом.уч.

рецессивные признаки – рахит, не поддающийся лечению витамином Д, коричневая эмаль зубов (заболевание кожи, при котором она напоминает рыбью чешую)(в каждом поколении родословной, проявляется чаще у ж, ж передает признак и ж, и м,а м только ж)

доминантные признаки – гемофилия, дальтонизм, катаракта, атрофия зрительного нерва, ихтиоз (не в каждом покол,чаще у м,ж передает и м, и ж, но чаще проявляется у м, м передает ген только ж)

Участок III: гены, расположенные в У хромосоме негом.участке(у нормального мужчины 1 Y-хромосома, поэтому признак всегда проявится,передается от м к м): гипертрихоз (избыточное оволосение ушной раковины), перепончатость пальцев на ногах, а также ген, контролирующий другой, аутосомный ген, ответственный за выработку X-Y – антигена.

    Генетические механизмы определения пола. Уровни формирования признаков пола в онтогенезе. Переопределение пола.

Существует несколько типов определения пола; основных типов – 3:

    прогамный,

    эпигамный,

    сингамный.

Прогамный характеризуется тем, что пол можно определить еще до оплодотворения по размерам яйцеклетки: если она крупная, содержит много питательных веществ – будет женский пол; если хилая, невзрачная – мужской пол.

Такой тип определения пола имеет место у коловраток, примитивных кольчатых червей, тлей.

Эпигамный означает определение пола после оплодотворения: пол определяется условиями среды.

Этот тип исключительно редок, сейчас известно только 2 случая; один из них – морской червь Bonellia viridis. У самок этого вида длинный хоботок; если личинка развивается на нем, получается самец, если самостоятельно, вне материнского организма – самка, если же сначала на хоботке, а затем вне его – интерсекс. Определяющим здесь является гормональное влияние материнского организма.

Сингамный характеризуется определением пола в момент оплодотворения и зависит от набора хромосом. Это самый распространенный тип.

Кариотип любого организма содержит 2 группы хромосом: одинаковые пары – аутосомы; разные в паре (обычно одной) – половые хромосомы, X-хромосома (так как у некоторых организмов похожа на «X») и Y-хромосома (меньшая).

Формирование пола в онтогенезе

Процесс длительный, включает несколько этапов. У человека – 4:

    Хромосомный. Этот уровень еще не гарантирует, что точно получится данный пол.

    Гонадный. Зачаточные половые железы. 2 слоя – корковый, cortex и мозговой, medulla . Выбор направления определяется Н-У-антигеном. Он кодируется аутосомным геном, который в свою очередь находится под контролем гена, находящийся в У-хромосоме. Этот белок должен подействовать на зачаточную гонаду на 6-10 неделе эмбриогенеза. Если он подействует в этот период, то из мозгового вещества начинает развиваться семенник. Если белок не подействует, то начинается развиваться корковое вещество – яичник.

    Фенотипический. – Формирование определенного фенотипа.(тембр голоса, развитие молочных желез, конституция тела)

    Психологический. – Психологическая самооценка принадлежности к тому или иному полу.

Переопределение пола

Зигота изначально бисексуальна.

У крупного рогатого скота может родиться телочка Фримартин(у него недоразвита матка, наблюдается химеризм по эритроцитарным антигенам и половым хромосомам)

У аквариумных рыбок Медаки при вскармливании им корма с добавлением женских половых гормонов самцы спреобразуются в самок.

У человека такого не происходит. Существует синдром Мориса, когда кариотип человека мужской, а фенотип женский

    Методы изучения наследственности человека: генеалогический, близнецовый, биохимический, цитогенетический, генетики соматических клеток, популяционно-статистический, моделирования (их сущность и возможности )

Такие периоды, для которых характерна повышенная чувствительность к воздействию повреждающих факторов, называют «критическими периодами эмбриогенеза». Вероятность формирования отклонений в развитии в критические периоды наиболее высока.

Отдельные ткани и органы формируются в различные периоды роста эмбриона и плода. При этом ткани организма в момент максимальной интенсивности процессов дифференцировки становятся высоко чувствительными к повреждающим воздействием внешней среды (ионизирующая радиация, инфекции, химические агенты).

Такие периоды, для которых характерна повышенная чувствительность к воздействию повреждающих факторов, называют «критическими периодами эмбриогенеза». Вероятность формирования отклонений в развитии в критические периоды наиболее высока. Перечислим основные критические периоды в развитии зародыша и плода .

Период бластогенеза

По данным ВОЗ первый критический период развития приходится на первые 2 недели развития - период бластогенеза. Ответная реакция в этот период реализуется по принципу «всё или ничего», то есть зародыш либо погибает, либо, в силу своей повышенной устойчивости и способности к восстановлению, продолжает нормально развиваться. Морфологические нарушения, возникающие на этом сроке, называют «бластопатиями». К ним относят анэмбрионию, формирующуюся вследствие ранней гибели и резорбции эмбриобласта, аплазию желточного мешка и др. Некоторые исследователи к бластопатиям относят эктопическую беременность и нарушения глубины имплантации развивающегося зародыша. Большая часть зародышей, поврежденных в период бластогенеза, а также те, которые образовались из дефектных половых клеток, несущих мутации, в этот период элиминируется путем спонтанных абортов. По данным научной литературы частота прерывания беременности на этом сроке составляет около 40% от всех состоявшихся беременностей. Чаще всего, женщина даже не успевает узнать о ее наступлении и расценивает эпизод как задержку менструального цикла.

Эмбриональный период

Второй критический период внутриутробного развития продолжается от 20-го до 70-го для после оплодотворения - это время максимальной ранимости зародыша. Весь эмбриональный период - с момента имплантации до 12 недели, - является очень ответственным периодом в развитии человека. Это время, когда происходит закладка и формирование всех жизненно важных органов, формируется плацентарный круг кровообращения, зародыш приобретает «человеческий облик».

Фетальный (плодный) период

Фетальный период длится с 12 недели до момента рождения. В это время происходит созревание организма - тонкая дифференцировка органов и тканей, сопровождающаяся быстрым ростом плода. При влиянии неблагоприятных факторов на развивающийся организм во время эмбрионального периода формируются так называемые «эмбриопатии», которые проявляются пороками развития. Те же вредности, влияющие на плод во время фетального периода, провоцируют развитие фетопатий, для которых морфологические пороки не характерны. Частота эмбриопатий достаточно высока - спонтанными абортами в эмбриональном периоде заканчивается не менее 10% зарегистрированных беременностей.

В первые 2-3 месяца внутриутробной жизни происходит интенсивное деление клеток и формирование тканей и органов. Благодаря делению, росту и переселению клеток каждая часть тела приобретают определенные очертания - осуществляется процесс морфогенеза. В основном процессы морфогенеза завершаются на 8-ой неделе развития. Основываясь на знаниях о сроках формирования органов, можно делать заключения о развитии врожденных пороков в связи с воздействием на эмбрион конкретных вредностей. Например, в литературе накоплено много данных о тератогенном действии противосудорожных препаратов, в частности, вальпроата. Этот препарат может индуцировать комплекс врожденных аномалий, в том числе, сочетание спинномозговой грыжи с дефектом межжелудочковой перегородки сердца. Такие пороки могут наблюдаться при вальпроатном синдроме, однако для этого необходимо, чтобы женщина принимала препарат до 8 недели беременности, так как к этому сроку завершается смыкание межжелудочковой перегородки и формирование позвоночного канала.

Нарушения развития в плодном периоде называет фетопатиями (от лат «fetus» - плод). Пороки развития в этот период могут возникнуть лишь в органах, не окончивших своего формирования (ткань головного мозга, зубы, гениталии, лёгкие). Для этого периода характерно формирование так называемых «вторичных» пороков развития - то есть искажения развития нормально сформированных органов вследствие воспалительных процессов (например, токсоплазмоз, вирусные инфекции) или нарушений созревания, приводящих к формированию дисплазий или гипоплазий органов и тканей.

Способность реагировать воспалительными процессами на инфекционное повреждение у плода формируется после 5-го месяца развития. Также свой вклад в патологию плодного периода вносят нарушения обмена веществ и хронические интоксикации у матери, в качестве примера можно привести диабетическую и алкогольную фетопатию. Из нарушений внутриутробного развития наибольшее клиническое и социальное значение имеют врожденные пороки развития (ВПР).

Современная наука считает, что не менее 50% всех ВПР имеют комплексную многофакторную природу, то есть образуются под влиянием наследственных и средовых факторов, тогда как 5% ВПР индуцировано тератогенными воздействиями. К тератогенным воздействиям относят любую вредность, под влиянием которой может сформироваться ВПР.

Известно несколько сотен тератогенных факторов, однако практическое значение у человека имеют всего лишь несколько:
- Эндокринные заболевания матери (сахарный диабет);
- Физические воздействия (температурные или ионизирующие);
- Химические вещества, к которым относятся некоторые медикаменты (ретиноиды, вальпроевая кислота, талидомид и др.) и алкоголь;
- Биологические факторы (инфекции - токсоплазмоз, краснуха и др.)

Часть этих факторов способны индуцировать определенные тератологические синдромы, хорошо известные врачам во всем мире. Эти синдромы могут реализовываться как эмбрио- или фетопатии, в зависимости от конкретного фактора и срока беременности, на котором он воздействует.

Реализация тератогенного эффекта зависит от многих составляющих, часть из которых определяется биологией зародыша. Вот наиболее весомые составляющие, определяющие степень повреждающего действия тератогена:
природа тератогена;
доза тератогена;
продолжительность воздействия;
возраст зародыша или плода;
генетическая предрасположенность формирующегося организма;
генетические особенности организма матери, а именно: функционирование системы детоксикации ксенобиотиков, нейтрализации свободных радикалов и др.

В развитии человеческого организма наиболее уязвимыми являются 1-ый и 2-ой критический период онтогенеза - это конец 1-ой начало 2-ой недели после оплодотворения и 3-6 недели беременности. Воздействие вредностей именно в течении 2-го периода приводит к формированию наибольшего количества ВПР.

Кроме критических необходимо учитывать терминационные периоды действия тератогена - то есть предельный срок беременности, в течение которого неблагоприятный фактор может индуцировать аномалии развития. Этот период определяется сроками завершения формирования органа и отличается для различных органов и тканей, например, грубый порок развития мозга - анэнцефалия, может сформироваться под воздействием тератогенных влияний до 8 недели беременности, тогда как дефекты межжелудочковой перегородки сердца - до 10-ой недели.

Значение генетической составляющей формирующегося организма можно продемонстрировать на примере талидомидного синдрома и алкогольной фетопатии. Талидомидный синдром сформировался лишь у 20% детей, матери которых во время беременности на одних и тех же ее сроках принимали одинаковые дозы талидомида.

Влияние тератогенных факторов чаще всего реализуется в виде развития множественных пороков и аномалий развития, формирование которых зависит от дозы повреждающего агента, продолжительности его воздействия и срока беременности, на котором произошло неблагоприятное влияние.

Жизнь каждого человека начинается не с рождения а с оплодотворения (зачатия), когда происходит слияние половых клеток (гамет) родителей, каждая из которых несет только половинный набор хромосом. Создание человеческого генотипа 46ХХ (женский) и 46 ХY (мужской) является началом индивидуальной жизни.

Беременность генетически детерминирована и продолжается 280 дней (40 недель).

Внутриутробный период развития плода разделяется на 3 стадии:

· Бластогенез – стадия зародыша (с момента оплодотворения до 15 дня беременности);

· Эмбриогенез – стадия на которой совершается органогенез и образуется плацента (с 16 до 75 дня беременности);

· Фетогенез – делят на ранний (76-180) дней и поздний (180 – 280 дней).

В течение фетального периода происходит функциональное созревание органов и систем, обеспечивающих переход в новые условия существования. Перинатальный период (1-27 недель) включает бластогенез и ранний фетогенез; антенатальный период (28-40 недель) – поздний фетогенез.

С началом родов заканчивается антенатальный период жизнедеятельности плода и начинается интранатальный период.

Основные события внутриутробного развития:

Этап развития Время, прошедшее от зачатия Длина эмбриона, плода.
Эмбриогенез (преэмбриональный период)
Первое деление дробления 30 часов
Перемещение в полость матки 4 дн.
Имплантация 5-6 дн.
Двухслойный диск 12 дн.
Лайонизация (женские зародыши) 16 дн. 0,2 мм.
Трехслойный диск и первияная полоска 1 мм.
Фетогенез (эмбриональный период)
Органогенез 4-8 нед.
Формирование головного и спинного мозга 4 нед. 4 мм.
Закладка сердца, почек, конечностей. 6 нед. 17 мм.
Начало развития кишечника и легких Появление пальцев Развитие ушей, почек, печени и мышц. 8 нед. 4 см.
Смыкание неба, формирование суставов 10 нед. 6 см.
Половая дифференцировка 12 нед. 9 см.
Развитие плода (фетальный период)
Ощутимые движения плода 16-18 нед. 20 см.
Открытие век 24-26 нед. 35 см.
Нарастание массы и длины тела 28-38 нед. 40-50 см.

Критические периоды внутриутробного развития - периоды наибольшего риска для жизни и здоровья эмбриона (плода). Это период имплантации (7-12 день), период образования зачатков органов (3-6 неделя беременности), 3-месяц беременности, когда заканчивается формирование плаценты и ее функции достигают высокой степени активности. В этот период у плода образуются зачатки коры головного мозга, появляются новые рефлексы, формируется кроветворная система, в крови появляются лейкоциты, повышается интенсивность обмена веществ. Формирование важнейших функциональных систем плода происходит с 20-й по 24-ю неделю.



Факторы риска:

Соматические заболевания матери (болезни сердечно-сосудистой системы, хронические заболевания органов дыхания, болезни крови, болезни почек) вызывая нарушения маточно-плацентарного кровообращения, препятствуют нормальному функционированию системы мать-плацента-плод.

Эндокринопатии матери не только являются причиной соответствующих эндокринопатий у ребенка, но и нарушают процессы морфогенеза многих органов.

Акушерско-гинекологические осложнения течения беременности могут привести к задержке темпов роста плода, а тазовое предлежание – и к поражению его мозга, гипофиза.

Вредные внешние воздействия на организм беременной и плод: могут быть причиной возникновения патологии антенатального периода.

Наследственные факторы. По данным Российской литературы, около 50-70% всех оплодотворенных яйцеклеток не развиваются, причем хромосомные и генные мутации являются в 90 % случаев причиной их гибели.

Предрасполагающим фактором является возраст родителей – пороки развития опорно-двигательного аппарата и дыхательной системы у детей от юных матерей встречаются достоверно чаще, чем при возрасте матери 22-30 лет. У женщин старше 35 лет достоверно чаще рождаются дети с пороками развития ЦНС.

4. Врожденные пороки развития плода (ВПР). Под этим термином следует понимать стойкие морфологические изменения органа или всего организма, выходящие за пределы вариаций их строения. Как синоним термина «врожденные пороки развития», может применяться термин «врожденные аномалии». ВПР чрезвычайно многообразны, количество нозологических форм исчисляется тысячами.



По этиологическому принципу различают три группы пороков:

а) наследственные – возникают в результате мутаций;

б) экзогенные (около 35 %), обусловленные повреждением тератогенными факторами непосредственно эмбриона или плода;

в) мультифакторные – произошедшие от совместного воздействия генетических и экзогенных факторов, когда ни один из них не явился причиной порока.

В зависимости от времени воздействия вредных факторов и, соответственно, объекта поражения, выделяют следующие формы пороков развития:

Гаметопатии – патологические изменения в половых клетках, произошедшие до оплодотворения и приводящие к спонтанному прерыванию беременности, врожденным порокам развития.

Бластопатии – повреждение зиготы в первые 2 недели после оплодотворения (до момента завершения дифференцировки зародышевых листков и начала маточно-плацентарного кровообращения), вызывающих гибель зародыша, внематочную беременность, пороки развития с нарушением формирования оси зародыша.

Эмбриопатии – поражение зародыша от момента прикрепления его к стенке матки (15 день после оплодотворения) до сформирования плаценты (75-й день внутриутробной жизни), проявляющиеся пороками развития отдельных органов и систем, прерыванием беременности.

Фетопатии – общее название болезней плода, возникающих под воздействием неблагоприятных факторов с 8-й недели внутриутробной жизни до начала родов. Проявлением фетопатии являются: задержка внутриутробного развития плода (ЗВУР), врожденные пороки развития (ВПР) вследствие персистирования эмбриональных структур (урахус, кишечный свищ, открытый артериальный проток и овальное окно) или эмбриональный щелей (расщелины губы, неба, позвоночника, уретры), сохранение первоначального расположения органов (крипторхизм), гипоплазия или дисплазия отдельных органов и тканей, врожденные болезни. Фетопатии зачастую обусловливают преждевременные роды, асфиксию, метаболические расстройства.

К врожденным порокам относятся следующие нарушения:

Агенезия – полное врожденное отсутствие органа.

Аплазия – врожденное отсутствие органа с наличием его сосудистой ножки.

Гипоплазия – недоразвитие органа.

Гипотрофия – уменьшенная масса тела новорожденного или плода.

Врожденная гиперплазия (гипертрофия) - увеличение массы органа или его размеров за счет возрастания числа или объема клеток. Макросомия (гигантизм) - увеличение длины тела. Гетеротопия (дистопия) - наличие клеток или тканей одного органа в другом или в тех зонах того же органа, где их не должно быть в норме. Дистопию тканей нередко называют хористией, а дистопию с опухолевидным разрастанием - гамартией. Гетероплазия - нарушение дифференцировки клеток в пределах одной и той же ткани (например, наличие клеток плоского эпителия в дивертикуле Меккеля). Эктопия - расположение органа в необычном месте. Возможно увеличение числа органов или их частей, например удвоение матки, двойная дуга аорты. Врожденный стеноз - сужение канала или отверстия. Атрезия - отсутствие естественного канала или отверстия. Персистирование - сохранение эмбриональных структур, в норме исчезающих к определенному периоду развития (например, наличие овального окна в межпредсердной перегородке у ребенка, достигшего возраста 1 года).

Дети от матерей с сахарным диабетом . Основные проблемы у детей, родившихся от матерей с сахарным диабетом – это микросомия, и родовая травма, недоношенность, асфиксия, болезнь гиалиновых мембран и транзиторное тахипноэ, кардиомегалия, полицитемия, стойкая гипогликемия, гипокалиемия, гипербилирубинемия, врожденные пороки. Выделяют диабетическую эмбрио- и фетопатию.

Алкогольная эмбриофетопатия развивается у 30-50% детей, рождающихся от матерей с хроническим алкоголизмом. Для них характерны: ЗВУР по диспластическому типу, черепно-лицевой дисформизм в 80-90% случаев, врожденные пороки развития у 30-50% детей, задержка психического развития с олигофренией в дальнейшем.

Просмотров